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1. Introduction

Several publications are available on the vibration of beams with one-step change in cross-section
(not carrying an axial force)—the most important being Jang and Bert [1] who expressed frequency
equations for classical end supports as fourth order determinant equated to zero. Naguleswaran [2]
expressed the frequency equations as second order determinants equated to zero. Several
publications are briefly reviewed in Ref. [2]. Transverse vibration of uniform beams carrying a
constant axial force is covered in text books e.g., Ref. [3]. Bokian [4] presented the frequencies (in
graphical form) of a uniform beam under axial compressive force and discussed buckling conditions
for classical boundary conditions. Bokian [5] extended the work in Ref. [4] to tensile axial loads.
The transverse vibration of one-step Euler–Bernoulli beam under axial force which changes

stepwise at the step, is considered in this paper. The system parameters are the ratio of the mass
per unit length and the ratio of flexural rigidity of the two portions, the step position and the axial
force in the two portions. The frequency equations of 16 combinations of boundary conditions are
derived and presented as fourth order determinants equated to zero. For the selected beam
parameters, the first three frequency parameters are tabulated for several sets of the axial force in
the two portions. From the pattern of the change in frequency parameter with change in the axial
forces and from physical considerations, it was concluded that for certain combinations of the two
axial forces, one of the modes was past stability.
A zero natural frequency (which initiates onset of instability or Euler buckling), is possible for

certain critical combinations of the axial force—at least one of which must be compressive.
Timoshenko [6] derived the transcendental equation from which the critical end force of a one-
step cantilever may be obtained. The reference also considered the buckling of a simply supported
one-step beam under an end force and another force at the step. Girijavallabhan [7] and Schreyer
[8] presented methods to obtain lower bounds of the critical end load of one-step cantilever.
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O’Rouke and Zebrowki [9] used a finite difference based scheme to obtain the lower bound of the
critical end force of one-step cantilevers and simply supported beams. The difference between the
‘exact’ values from Ref. [6] and the corresponding values in Refs. [7–9] were substantial.
The vibration of clamped–free, clamped–clamped, clamped–pinned uniform beams stiffened by

one or more rings and under constant conservative or follower axial force was addressed by Dube
et al. [10]. Au et al. [11] used modified beam vibration functions to study the vibration and
stability of beams with abrupt changes in cross-section and for example calculations/comparison
chose the same beams as in Ref. [10]. In Refs. [10,11] step changes in axial force was not allowed
for. Fan et al. [12] presented a kind of Gibbs–Phenomenon–Free Fourier series and demonstrated
its applications to study the vibration and stability of uniform beams stiffened with rings and
beams with open cracks. A beam stiffened by one ring has two-step changes in cross-section.
Refs. [10–12] do not have any results on beams with one-step change in cross-section.
In the present paper, the critical axial force combinations for the 16 sets of boundary conditions

are tabulated for the selected system parameters.
The theory developed is applicable to any type of step change in cross-section but in the present

paper particular attention was paid to three of the types which occur commonly in engineering
applications. Type 1 beam is of constant depth and with step changes in breadth, Type 2 is of
constant breadth and with step changes in depth and Type 3 is with step changes in depth and
breadth i.e., with similar cross-sections—for example, a beam of circular cross-section with step
changes in diameter. The ‘active’ dimension of the three types of beam are, respectively, the
breadth, depth and diameter of the beam portion.
The results may be used as bench marks to judge the accuracy of results obtained by any

numerical methods.

2. Theory

Fig. 1a shows the Euler–Bernoulli beam O1O0O2 with step change in cross-section and in axial
force at O0: The end O1 is axially restrained and O2 is axially free. The ends O1 and O2 are on
classical clamped ðclÞ; pinned ðpnÞ; sliding ðslÞ or free ð frÞ supports. The flexural rigidity, mass per
unit length, the length of the portion O1O0 are EI1;m1 and L1 and the axial force in the portion is
T1: The co-ordinate systems with origin at O1; O2 are in contra directions. The dynamics of each
beam portion are treated separately.

2.1. The mode shape of O1O0

Using the sign convention in Ref. [3], for free vibration at frequency o; if the ordinate y1ðx1Þ is
the amplitude of vibration at abscissa x1 ð0px1pL1Þ; then the amplitude of bending moment
M1ðx1Þ and shearing force Q1ðx1Þ are

M1ðx1Þ ¼ EI1
d2y1ðx1Þ
dx21

; Q1ðx1Þ ¼ �EI1
d3y1ðx1Þ
dx31

þ T1
dy1ðx1Þ
dx1

;

EI1
d4y1ðx1Þ
dx41

� T1
d2y1ðx1Þ
dx21

� m1o2y1ðx1Þ ¼ 0: ð1Þ
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To express the set of equations (1) in dimensionless form, a beam of flexural rigidity EIR; mass
per unit length mR and length L is used as ‘reference’ and one defines the dimensionless abscissa
X1; amplitude Y1ðX1Þ; step position parameter R1; the operators D1;Dn

1; the dimensionless
bending moment M1ðX1Þ; shearing force Q1ðX1Þ; axial force t1; flexural rigidity ratio f1; mass per
unit length ratio m1; dimensionless frequency parameters aR & a1 as follows:

X1 ¼
x1

L
; Y1ðX1Þ ¼

y1ðx1Þ
L

; R1 ¼
L1

L
; D1 ¼

d

dX1
; Dn

1 ¼
dn

dX n
1

;

M1ðX1Þ ¼
M1ðx1ÞL

EIR

; Q1ðX1Þ ¼
Q1ðx1ÞL2

EIR

; t1 ¼
T1L

2

EIR

;

f1 ¼
EI1

EIR

; m1 ¼
m1

mR

; a2R ¼
mRo4L4

EIR

; a41 ¼
m1o2L4

EI1
¼

m1
f1

� �
a4R; ð2Þ

In Eqs. (2), aR is the natural frequency parameter. The nth natural frequency parameter is
denoted by aR;n: The ‘active’ dimension d1 of Type 1, 2 and 3 beams are the breadth, depth and
diameter, respectively, and one has

for Type 1 beam; m1 ¼ d1=dR and f1 ¼ d1=dR;

for Type 2 beam; m1 ¼ d1=dR and f1 ¼ ðd1=dRÞ
3;

for Type 3 beam; m1 ¼ ðd1=dRÞ
2 and f1 ¼ ðd1=dRÞ

4; ð3Þ

where dR is the ‘active’ dimension of the ‘reference’ beam.
Eqs. (1) in dimensionless form are

M1ðX1Þ ¼ f1D
2
1½Y1ðX1Þ�; Q1ðX1Þ ¼ �f1D

3
1½Y1ðX1Þ� þ t1D1½Y1ðX1Þ�;

f1D
4
1½Y1ðX1Þ� � t1D2

1½Y1ðX1Þ� � m1a
4
RY1ðX1Þ ¼ 0: ð4Þ
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Fig. 1. The one-step beam O1O0O2; the axial forces at O1; O0 and O2; the co-ordinate systems and the forces and
moments on the element at O0: The end O1 is axially restrained and O2 is axially free.
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The solution of the dimensionless mode shape differential equation (4) is

Y1ðX1Þ ¼ C1;1 sin a1X1 þ C2;1 cos a1X1 þ C3;1 sinh b1X1 þ C4;1 cosh b1X1; ð5Þ

where C1;1 through to C4;1 are the four constants of integration and

a21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ 4m1f1a

4
R

q
� t1

2f1
; b21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ 4m1f1a

4
R

q
þ t1

2f1
: ð6Þ

The need for Eq. (5) to satisfy the boundary conditions at O1 may be used to eliminate two of
the constants. The mode shape of the portion O1O0 may be expressed as

Y1ðX1Þ ¼ A1U1ðX1Þ þ B1V1ðX1Þ; ð7Þ

where A1 and B1 are constants and the functions U1ðX1Þ and V1ðX1Þ for cl, pn, sl or fr boundary
conditions at O1 are

cl: U1ðX1Þ ¼ sin a1X1 �
a1

b1
sinh b1X1; V1ðX1Þ ¼ cos a1X1 � cosh b1X1;

pn: U1ðX1Þ ¼ sin a1X1; V1ðX1Þ ¼ sinh b1X1;

sl: U1ðX1Þ ¼ cos a1X1; V1ðX1Þ ¼ cosh b1X1;

fr: U1ðX1Þ ¼ sin a1X1 þ
f1a

3
1 þ t1a1

f1b
3
1 � t1b1

sinh b1X1; V1ðX1Þ ¼ cos a1X1 þ
a21
b21
cosh b1X1

ð8Þ

The derivatives of U1ðX1Þ and V1ðX1Þ are obtained easily by straightforward differentiation.

2.2. The mode shape of portion O2O0

The flexural rigidity, mass per unit length, the length of the portion O2O0 are EI2; m2 and L2

and axial force in the portion of the beam is T2: Following the same procedure outlined in
previous section, the mode shape of the portion O2O0 may be expressed in the form

Y2ðX2Þ ¼ A2U2ðX2Þ þ B2V2ðX2Þ; ð9Þ

in which A2 and B2 are constants and the functions U2ðX2Þ and V2ðX2Þ for cl, pn, sl or fr supports
at O2 are obtained by replacing the subscript 1 with 2 in the set of equations (8) in which the
various coefficients are obtained with the same subscript substitution in Eqs. (2)–(6).

3. The frequency equation

The forces and moments acting on the element at O0 is shown in Fig. 1b. The need to satisfy
continuity of deflection and of slope and compatibility of bending moment and of shearing force
at O0 (bearing in mind the contra direction of the co-ordinate axes at O1 and at O2 will result in
the following equations in dimensionless form:

Y1ðR1Þ ¼ Y2ðR2Þ; D1½Y1ðR1Þ� ¼ �D2½Y2ðR2Þ�; f1D
2
1½Y1ðR1Þ� ¼ f2D

2
2½Y2ðR2Þ�;

f1D
3
1½Y1ðR1Þ� � t1D1½Y1ðR1Þ� ¼ �f2D

3
2½Y2ðR2Þ� þ t2D2½Y2ðR2Þ�: ð10Þ
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When Eqs. (7) and (9) are substituted into Eq. (10), for non-trivial solution, the coefficient
matrix must be singular and one gets the frequency equation;

U1ðR1Þ V1ðR1Þ �U2ðR2Þ �V2ðR2Þ

D1½U1ðR1Þ� D1½V1ðR1Þ� D2½U2ðR2Þ� D2½V2ðR2Þ�

f1D
2
1½U1ðR1Þ� f1D

2
1½V1ðR1Þ� �f2D

2
2½U2ðR22Þ� �f2D

2
2½V2ðR2Þ�

f1D
3
1½U1ðR1Þ� f1D

3
1½V1ðR1Þ� f2D

3
2½U2ðR2Þ� f2D

3
2½V2ðR2Þ�

�t1D1½U1ðR1Þ� �t1D1½V1ðR1Þ� �t2D2½U2ðR2Þ� �t2D2½V2ðR2Þ�

������������

������������
¼ 0: ð11Þ

3.1. Natural frequency calculations

In this paper the ‘reference’ beam in the set of equations (2) was chosen with EIR ¼ EI1 i.e.,
f1 ¼ 1 and mR ¼ m1 i.e., m1 ¼ 1 and natural frequency parameters were expressed (without loss of
generality) via the frequency parameter aR ¼ a1: Without loss of generality, one may choose

R1 þ R2 ¼ 1: ð12Þ

The system parameters are m2; f2; R1; t1 and t2: The roots of the frequency equation (11) were
determined by a ‘search’ to bracket an approximate range within which a root is present followed
by an iterative procedure based on linear interpolation. The procedure is as follows: U1ðX1Þ and
V1ðX1Þ was chosen from Eq. (8) taking account of the boundary conditions at O1: A trial
frequency parameter (aR ¼ 0:1 say) was assumed and U1ðR1Þ; V1ðR1Þ;D1½U1ðR1Þ�; D1½V1ðR1Þ�; etc.
were calculated. For the selected set of system parameters one proceeded to calculate the elements
of the first and second columns of the determinant of Eq. (11). Similarly taking account of the
type of support at O2; the elements of the third and fourth columns of the determinant were
calculated for the same aR: The value of the determinant of the frequency equation (11) was
calculated by inductive development [13]. The value of aR was increased in steps of 0.1 and the
calculations described were repeated till a sign change in the determinant occurred. The sign
change indicated the presence of a root within this range. A ‘search’ was made within this range
but with change of 0.01 in aR to narrow the range within which the root lies. At this stage an
iterative procedure based on linear interpolation was invoked to calculate the root to the pre-set
accuracy. The ‘search’ procedure was continued (from the value of the first root) to locate the
second root and so on.
In the following example calculations the parameters of the one-step beams are: ‘active’

dimension dR ¼ 1:0; d1 ¼ dR; d2 ¼ 0:80 dR; beam portion length parameters: R1 ¼ 0:375 ðR2 ¼
0:625Þ: Naguleswaran [2] tabulated the first three frequency parameters of the example Type 1, 2
and 3 beams without axial force for 16 combinations of classical boundary conditions. Note that
in absence of axial force, rigid-body rotation is possible for pn\ fr; fr\ pn and fr\ fr beams. In
Tables 1–4 in the present paper, the frequency parameters of the example beams are tabulated for
various combinations of t1 and t2:
The beam considered in Table 1 is a one-step tie-bar under constant axial tension t ¼ 10:0 i.e.,

t1 ¼ 10:0; t2 ¼ 10:0: The axial tension ‘stiffens’ the system and the frequency parameters are
greater than the corresponding frequency parameter in Ref. [2] bearing in mind that under axial
tension, rigid-body rotation is not possible for pn\ fr; fr\ pn and fr\ fr beams.
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Table 1

The first three non-zero frequency parameters of the three types of one-step beams

BC O1\O2 Type 1 Type 2 Type 3

a1;1 a1;2 a1;3 a1;1 a1;2 a1;3 a1;1 a1;2 a1;3

cl\cl 5.0696 8.1124 11.2094 4.8082 7.6667 10.5270 4.9010 7.7046 10.5970

cl\ pn 4.4443 7.3996 10.4627 4.2791 7.0102 9.8636 4.4149 7.0649 9.9370

cl\sl 2.9255 5.9095 8.9225 2.8799 5.6161 8.4450 3.0196 5.7043 8.5013

cl\ fr 2.8234 5.4484 8.2878 2.8163 5.2631 7.8933 2.9681 5.4079 7.9802

pn\cl 4.3648 7.3913 10.4579 4.1477 7.0183 9.7915 4.1886 7.0737 9.8599

pn\ pn 3.8193 6.6927 9.7236 3.6867 6.3862 9.1464 3.7746 6.4485 9.2319

pn\sl 2.4547 5.2222 8.2020 2.4193 4.9988 7.7806 2.5289 5.0582 7.8623

pn\ fr 2.4001 4.8392 7.5966 2.3890 4.7102 7.2746 2.5064 4.8207 7.3863

sl\cl 2.7820 5.8881 8.9116 2.6910 5.5739 8.3598 2.6815 5.6600 8.3897

sl\ pn 2.3875 5.2409 8.1941 2.3716 5.0240 7.6990 2.4008 5.1333 7.7527

sl\sl 3.8026 6.7054 9.7107 3.7179 6.3331 9.1355 3.8010 6.4238 9.1714

sl\ fr 3.5909 6.1890 9.0578 3.5766 5.9314 8.5540 3.6894 6.0718 8.6244

fr\cl 2.6599 5.3460 8.2510 2.5857 5.0550 7.7890 2.5781 5.1070 7.8158

fr\ pn 2.3165 4.7818 7.5557 2.3099 4.5814 7.1412 2.3378 4.6646 7.1801

fr\sl 3.5323 6.1273 9.0410 3.4645 5.7964 8.5567 3.5373 5.8536 8.6057

fr\ fr 3.3709 5.6829 8.4157 3.3630 5.4527 8.0058 3.4604 5.5608 8.0823

Beam parameters: d1 ¼ dR ¼ 1:0; d2 ¼ 0:8 dR; R1 ¼ 0:375; R2 ¼ 1� R1: Axial forces: t1 ¼ 10:0; t2 ¼ 10:0:

Table 2

Same as Table 1 but axial forces: t1 ¼ 10:0; t2 ¼ 0:0

BC O1\O2 Type 1 Type 2 Type 3

a1;1 a1;2 a1;3 a1;1 a1;2 a1;3 a1;1 a1;2 a1;3

cl\cl 4.9058 7.9094 11.0683 4.5922 7.3977 10.3334 4.6506 7.3834 10.3603

cl\ pn 4.1416 7.1341 10.2784 3.8982 6.6612 9.6142 3.9790 6.6496 9.6317

cl\sl 2.6118 5.6257 8.6941 2.5035 5.2485 8.1400 2.5865 5.2784 8.1313

cl\ fr 2.1347 4.8642 7.9079 2.0683 4.5498 7.3952 2.1425 4.6085 7.3788

pn\cl 4.1823 7.1806 10.3183 3.9124 6.7395 9.6007 3.9185 6.7416 9.6287

pn\ pn 3.4982 6.3940 9.5405 3.2883 5.9978 8.8998 3.3271 5.9846 8.9326

pn\sl 2.2082 4.8829 7.9677 2.1313 4.5660 7.4692 2.2081 4.5540 7.4851

pn\ fr 1.8330 4.1653 7.1751 1.8034 3.8972 6.7319 1.8824 3.9099 6.7303

sl\cl 2.4123 5.7112 8.7410 2.2514 5.3358 8.1290 2.1976 5.3798 8.1110

sl\ pn 1.6552 4.9271 7.9800 1.5611 4.6220 7.4101 1.5354 4.6626 7.4058

sl\sl 3.3215 6.4683 9.5095 3.1412 6.0177 8.8631 3.1547 6.0492 8.8392

sl\ fr 2.5872 5.6978 8.7401 2.4755 5.3171 8.1280 2.5035 5.3559 8.1093

fr\cl 2.2785 5.1894 8.0655 2.1378 4.8416 7.5402 2.0908 4.8566 7.5144

fr\ pn 1.5527 4.4936 7.3189 1.4827 4.2118 6.8238 1.4653 4.2362 6.7955

fr\sl 3.0633 5.8860 8.8252 2.9122 5.4741 8.2668 2.9292 5.4701 8.2507

fr\ fr 2.3735 5.1896 8.0621 2.3014 4.8352 7.5363 2.3394 4.8465 7.5088
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Table 3

Same as Table 1 but axial forces: t1 ¼ 10:0; t2 ¼ �5:0

BC O1\O2 Type 1 Type 2 Type 3

a1;1 a1;2 a1;3 a1;1 a1;2 a1;3 a1;1 a1;2 a1;3

cl\cl 4.8136 7.8002 10.9943 4.4638 7.2490 10.2297 4.4959 7.2019 10.2315

cl\ pn 3.9441 6.9890 10.1805 3.6216 6.4634 9.4785 3.6373 6.4080 9.4624

cl\sl 2.3400 5.4649 8.5710 2.1064 5.0284 7.9711 2.0570 5.0143 7.9217

cl\ fr 4.4395 7.6935 10.9418 3.9573 7.1000 10.1606 3.8879 7.0096 10.1441

pn\cl 4.0786 7.0647 10.2452 3.7705 6.5805 9.4984 3.7490 6.5470 9.5026

pn\ pn 3.2792 6.2245 9.4428 2.9797 5.7664 8.7643 2.9485 5.6976 8.7645

pn\sl 1.9601 4.6825 7.8387 1.7613 4.2922 7.2913 1.7082 4.2201 7.2634

pn\ fr 3.6239 6.9252 10.1858 3.1445 6.3879 9.4201 3.0211 6.2916 9.4056

sl\cl 2.1247 5.6101 8.6517 1.8493 5.1921 8.0051 1.6980 5.2042 7.9589

sl\ pn 4.7291 7.8663 10.9785 4.3447 7.2517 10.2260 4.3161 7.2116 10.1844

sl\sl 2.9369 6.3350 9.4039 2.5944 5.8309 8.7171 2.4557 5.8190 8.6582

sl\ fr 5.3690 8.5683 11.7398 4.8560 7.8889 10.9307 4.7687 7.8132 10.8931

fr\cl 1.9604 5.0995 7.9671 1.6896 4.7114 7.4048 1.5304 4.6977 7.3470

fr\ pn 4.3059 7.1923 10.2801 3.9454 6.6481 9.5894 3.9038 6.5773 9.5725

fr\sl 2.6534 5.7513 8.7101 2.3235 5.2843 8.1082 2.1712 5.2357 8.0522

fr\ fr 4.8529 7.8666 11.0294 4.3599 7.2647 10.2634 4.2444 7.1653 10.2491

cl\ fr; pn\ fr; sl\ pn; sl\ fr; fr\ pn; fr\ fr—first mode of Type 1, 2 and 3 beams unstable.

Table 4

Same as Table 1 but axial forces: t1 ¼ 0:0; t2 ¼ �5:0

BC O1\O2 Type 1 Type 2 Type 3

a1;1 a1;2 a1;3 a1;1 a1;2 a1;3 a1;1 a1;2 a1;3

cl\cl 4.6637 7.7441 10.9243 4.2897 7.1934 10.1629 4.2971 7.1448 10.1632

cl\ pn 3.7643 6.9216 10.1155 3.4152 6.3876 9.4201 3.4039 6.3237 9.4047

cl\sl 2.1380 5.3464 8.5160 1.8981 4.8844 7.9212 1.8298 4.8450 7.8728

cl\ fr 4.2670 7.6347 10.8713 3.7343 7.0385 10.0937 3.6212 6.9432 10.0758

pn\cl 3.7823 6.9572 10.1372 3.4153 6.4800 9.3818 3.3323 6.4504 9.3779

pn\ pn 2.8422 6.1074 9.3304 2.3995 5.6498 8.6481 2.2069 5.5799 8.6436

pn\sl 0.5227 4.4795 7.7297 4.0511 7.1879 10.0783 3.9389 7.1624 10.0581

pn\ fr 3.2276 6.8130 10.0758 2.5255 6.2788 9.3011 2.2188 6.1827 9.2782

sl\cl 1.9914 5.3996 8.5409 1.7137 4.9626 7.8822 1.5523 4.9561 7.8252

sl\ pn 4.5114 7.7279 10.9040 4.1146 7.0930 10.1547 4.0724 7.0338 10.1151

sl\sl 2.7196 6.1424 9.3115 2.3738 5.6118 8.6184 2.2169 5.5753 8.5542

sl\ fr 5.1475 8.4518 11.6658 4.6041 7.7559 10.8611 4.4892 7.6645 10.8259

fr\cl 0.5762 4.5447 7.7456 4.0639 7.1776 10.1750 3.9658 7.1174 10.1805

fr\ pn 3.6383 6.9119 10.1226 3.1275 6.3457 9.4302 2.9491 6.2542 9.4186

fr\sl 0.7465 5.3014 8.5203 4.7606 7.9171 10.8720 4.6413 7.8644 10.8765

fr\ fr 4.2436 7.6310 10.8780 3.5611 7.0134 10.1060 3.2564 6.9004 10.0934

cl\ fr; pn\ fr; sl\ pn; sl\ fr; fr\ pn; fr\ fr—first mode of Type 1, 2 and 3 beams unstable. pn\sl; fr\cl; fr\sl—first mode of

Type 2 and 3 beams unstable.

S. Naguleswaran / Journal of Sound and Vibration 270 (2004) 1045–1055 1051



The beam considered in Table 2 had the first portion under axial tension t1 ¼ 10:0 while the
second portion was not under an axial force i.e., t2 ¼ 0:0: The frequency parameters are less than
the corresponding frequency parameters in Table 1 but greater that those in Ref. [2].
The beam in Table 3 had the first portion under tension t1 ¼ 10:0 while the second portion was

under compression t2 ¼ �5:0: The frequency parameters here are less than the corresponding
frequency parameters in Table 2. From the pattern of frequency parameter change in Tables 1
and 2 it is concluded that cl\ fr; pn\ fr; sl\ pn; sl\ fr; fr\ pn and fr\ fr beams have buckled in the first
mode. Recalculation with axial forces t1 ¼ 10:0; t2 ¼ �2:0 showed that the beams were stable for
all the 16 combinations of boundary conditions.
In Table 4, the first portion was not under an axial force i.e., t1 ¼ 0:0; while the second portion

of the beam was under compression t2 ¼ �5:0: The frequency parameters here are less than the
corresponding frequency parameters in Table 3. Type 1, 2 and 3 cl\ fr; pn\ fr; sl\ pn; sl\ fr; fr\ pn
and fr\ fr beams have buckled in the first mode under this axial force. In addition Type 2 and 3
pn\sl; fr\cl and fr\sl beams have buckled in the first mode.

4. Euler buckling

Evidence from Tables 1–4 and physical considerations suggest that decrease in t1 and/or t2 will
result in a decrease in the frequency parameters. For some combinations of t1 and t2 a frequency
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Table 5

The first two critical axial force tc;1 and tc;2 of one-step beam under constant axial compressive force

BC O1\O2 Type 1 Type 2 Type 3

tc;1 tc;2 tc;1 tc;2 tc;1 tc;2

R1 ¼ 0:375
cl\cl �33.6543 �70.327 �24.3771 �50.801 �20.8214 �42.353
cl\ pn �17.1799 �51.201 �12.5579 �36.383 �10.7975 �30.410
cl\sl �8.8109 �33.664 �6.9989 �24.499 �6.1887 �21.053
cl\ fr �2.2763 �19.191 �1.8546 �14.576 �1.6367 �12.787
pn\cl �17.5818 �52.424 �12.6994 �40.109 �10.5859 �34.505
pn\ pn �8.3176 �34.816 �5.7238 �26.085 �4.6941 �22.082
pn\sl �2.0060 �19.327 �1.3135 �13.960 �1.0593 �11.637
pn\ fr �8.3176 �34.816 �5.7238 �26.085 �4.6941 �22.082

R1 ¼ 0:5
cl\cl �34.9876 �72.442 �26.2391 �58.282 �22.3984 �51.395
cl\ pn �17.4319 �53.857 �12.8019 �42.021 �10.9603 �36.109
cl\sl �8.8549 �34.988 �7.2430 �26.247 �6.5820 �22.432
cl\ fr �2.3584 �19.350 �2.0839 �14.674 �1.9198 �12.863
pn\cl �18.5199 �52.644 �14.8888 �41.401 �12.9934 �37.089
pn\ pn �8.7461 �35.416 �6.5197 �28.760 �5.5066 �25.754
pn\sl �2.0472 �20.255 �1.3811 �16.221 �1.1257 �14.154
pn\ fr �8.7461 �35.416 �6.5197 �28.760 �5.5066 �25.754

Beam parameters: d1 ¼ dR ¼ 1:0; d2 ¼ 0:8 dR; R1 as stated.
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parameter may be zero. This is Euler buckling or onset of instability. A necessary but not
sufficient condition for buckling is one of t1 and t2 or both must be compressive. Further decrease
in t1 and/or t2 will render the mode unstable. In what follows, some critical combinations of the
axial forces are considered.
Consider the buckling of the example one-step beam under critical axial force tc ¼ t1 ¼ t2:

For the selected set of beam parameters, to calculate tc one writes aR ¼ 0 in the frequency
equation (11). The ‘search and linear interpolation’ routine used for frequency parameter
calculation was used to calculate the critical axial force tc for R1 ¼ 0:375 and for R1 ¼ 0:50: The
first two critical forces tc;1 and tc;2 are tabulated in Table 5 for cl\cl through to pn\ fr boundary
conditions only. It was found that tc of sl\cl; cl\sl and sl\sl beams were the same, tc of sl\ pn; cl\n
and sl\ fr beams were the same, tc of fr\cl; pn\sl and fr\sl beams were identical and tc of fr\ pn;
pn\ fr and fr\ fr beams were identical. Timoshenko [6, p. 113] derived the formula to calculate the
critical compressive force of a one-step cantilever. The values obtained from the formula and the
values listed for tc of cl\ fr beam were identical. Timoshenko [6, p. 98] also provided the
expression for buckling of a simply supported one-step beam under constant compressive axial
force. The tc of pn\ pn beam in Table 5 and the values from the equation in Ref. [6] and were
found to be identical.
In the next axial force combinations considered, the first portion was under critical axial

compressive force t1c while the axial force in second portion was constant. The first two critical
axial force t1c;1 and t1c;2 tabulated in Table 6 are for t2 ¼ 0:0 and for t2 ¼ 2:0: Note that for
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Table 6

The first two critical axial force t1c;1 and t1c;2 in first portion of one-step beam

BC O1\O2 Type 1 Type 2 Type 3

t1c;1 t1c;2 t1c;1 t1c;2 t1c;1 t1c;2

t2 ¼ 0:0
cl\cl �68.5273 �178.964 �54.2496 �170.872 �48.1686 �168.098
cl\ pn �47.6525 �174.422 �38.6971 �168.348 �35.0444 �166.206
cl\sl �23.7528 �164.648 �21.6548 �162.247 �20.8732 �161.387
cl\ fr �17.5460 �157.914 �17.5460 �157.914 �17.5460 �157.914
pn\cl �29.2003 �103.260 �22.8799 �90.950 �19.7757 �86.483
pn\ pn �16.6273 �91.817 �12.4257 �84.043 �10.5347 �81.220
pn\sl �2.9310 �76.813 �1.9781 �74.476 �1.6134 �73.631
pn\ fr �70.1839 �280.735 �70.1839 �280.735 �70.1839 �280.735

t2 ¼ 2:0
cl\cl �70.2119 �179.750 �56.1811 �171.685 �50.2004 �168.914
cl\ pn �50.0799 �175.519 �41.4060 �169.445 �37.8561 �167.295
cl\sl �25.4269 �166.663 �23.3936 �164.227 �22.6194 �163.334
cl\ fr �22.2976 �162.968 �21.8191 �162.431 �21.5527 �162.134
pn\cl �30.3975 �104.287 �24.3273 �92.000 �21.3448 �87.518
pn\ pn �18.3312 �93.228 �14.4118 �85.462 �12.6410 �82.619
pn\sl �3.6647 �78.750 �2.7705 �76.406 �2.4209 �75.538
pn\ fr �2.2741 �75.182 �2.0541 �74.656 �1.9308 �74.365

t2 ¼ 0 pn\ fr—rigid-body rotation possible. t2 as shown in table. Beam parameters: as in Table 1.
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t2 ¼ 0:0; the critical axial force t1c of cl\ fr beams are same for Type 1, 2 and 3 beams. This is to be
expected because for fr condition of the second portion, buckling will be independent of the
dimensions of the second portion and from Ref. [6], t1c ¼ ½ð2n � 1Þp=2R1Þ�2 where n ¼ 1; 2y :
For t2 ¼ 0:0 for the same reason the critical axial force of pn\ fr beams are the same and from
Ref. [4] t1c ¼ ½np=R1�2; where n ¼ 0; 1; 2;y : Note that the first buckling mode of pn-fr beam is
rigid-body rotation and technically the critical t1c of pn\ fr beam (for t2 ¼ 0:0) in Table 6 need to
be shifted one cell to the right. Recall that t1c of cl\ fr and fr\ fr beams are the same and t1c of sl\ fr
and pn\ fr beams are the same. For t2 ¼ 2:0 rigid-body rotation is not possible.
In the next case considered, the axial force in first portion was constant while the axial force in

second portion was critical t2c: The first two critical forces t2c;1 and t2c;2 are tabulated in Table 7
for t1 ¼ 0:0 and for t1 ¼ 2:0: For t1 ¼ 0; if the first portion is fr then, t2c of fr\cl; fr\ pn; fr\sl and
fr\ fr beams should be independent of the dimensions of the first portion. Note that (for t1 ¼ 0),
t2c of fr\cl (which is the same as t2c of pn\slÞ is the same for Type 1, 2 and 3 beams provided the t2c

is normalized relative to the second portion of the beam.

5. Concluding remarks

The frequency equations of Euler–Bernoulli one-step beam under different axial force in the
two beam portions and 16 combinations of classical boundary conditions are expressed as fourth
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Table 7

The first two critical axial force t2c;1 and t2c;2 in second portion of one-step beam

BC O1\O2 Type 1 Type 2 Type 3

t2c;1 t2c;2 t2c;1 t2c;2 t2c;1 t2c;2

t1 ¼ 0:0
cl\cl �51.2009 �92.022 �34.7967 �62.831 �28.8331 �51.682
cl\ pn �22.1247 �73.048 �15.4717 �49.277 �13.0019 �40.549
cl\sl �10.8867 �53.272 �8.1190 �36.348 �6.9637 �30.143
cl\ fr �2.4292 �27.422 �1.9313 �19.370 �1.6875 �16.300
pn\cl �38.0548 �69.727 �25.0537 �49.048 �20.2154 �40.609
pn\ pn �14.4104 �52.920 �9.4089 �36.373 �7.5781 �29.786
pn\sl �5.0532 �45.479 �3.2341 �29.107 �2.5873 �23.285
pn\ fr �20.2130 �80.852 �12.9363 �51.745 �10.3490 �41.396

t1 ¼ 2:0
cl\cl �51.8625 �92.795 �35.3483 �63.437 �29.3243 �52.242
cl\ pn �22.5650 �73.822 �15.8266 �49.912 �13.3122 �41.133
cl\sl �11.2308 �53.893 �8.3510 �36.859 �7.1454 �30.586
cl\ fr �2.5465 �27.941 �2.0028 �19.762 �1.7410 �16.624
pn\cl �39.8965 �70.515 �26.6213 �49.655 �21.6967 �41.138
pn\ pn �15.5866 �54.319 �10.4628 �37.467 �8.5882 �30.779
pn\sl �7.0297 �47.643 �5.1005 �31.245 �4.3829 �25.405
pn\ fr �0.9277 �22.339 �0.8503 �15.013 �0.8029 �12.390

t1 ¼ 0 pn\ fr—rigid-body rotation possible. t1 as shown in table. Beam parameters: as in Table 1.
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order determinants equated to zero. The system parameters are the ratio of the mass per unit
length and the ratio of flexural rigidity of the two portions, the step position and the axial force in
the two portions. For an example set of beam parameters, the first three frequency parameters are
tabulated for various combinations of axial forces in the two portions.
Euler buckling occurs for certain combinations of the axial forces for which a frequency

parameter is zero. The first two critical combinations are tabulated for the example set of beam
parameters.
The tables may be used to judge frequencies and buckling axial force combinations obtained by

numerical methods like Rayleigh–Ritz, finite element, finite difference, etc. Although results are
presented for the three types of beams, the method developed is applicable for any type of step
changes in cross-section.
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