ACADEMIC PRESS

Letter to the Editor

Transverse vibration and stability of an Euler-Bernoulli beam with step change in cross-section and in axial force

S. Naguleswaran*
Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Received 30 August 2002; accepted 28 April 2003

1. Introduction

Several publications are available on the vibration of beams with one-step change in cross-section (not carrying an axial force) -the most important being Jang and Bert [1] who expressed frequency equations for classical end supports as fourth order determinant equated to zero. Naguleswaran [2] expressed the frequency equations as second order determinants equated to zero. Several publications are briefly reviewed in Ref. [2]. Transverse vibration of uniform beams carrying a constant axial force is covered in text books e.g., Ref. [3]. Bokian [4] presented the frequencies (in graphical form) of a uniform beam under axial compressive force and discussed buckling conditions for classical boundary conditions. Bokian [5] extended the work in Ref. [4] to tensile axial loads.

The transverse vibration of one-step Euler-Bernoulli beam under axial force which changes stepwise at the step, is considered in this paper. The system parameters are the ratio of the mass per unit length and the ratio of flexural rigidity of the two portions, the step position and the axial force in the two portions. The frequency equations of 16 combinations of boundary conditions are derived and presented as fourth order determinants equated to zero. For the selected beam parameters, the first three frequency parameters are tabulated for several sets of the axial force in the two portions. From the pattern of the change in frequency parameter with change in the axial forces and from physical considerations, it was concluded that for certain combinations of the two axial forces, one of the modes was past stability.

A zero natural frequency (which initiates onset of instability or Euler buckling), is possible for certain critical combinations of the axial force-at least one of which must be compressive. Timoshenko [6] derived the transcendental equation from which the critical end force of a onestep cantilever may be obtained. The reference also considered the buckling of a simply supported one-step beam under an end force and another force at the step. Girijavallabhan [7] and Schreyer [8] presented methods to obtain lower bounds of the critical end load of one-step cantilever.

[^0]O'Rouke and Zebrowki [9] used a finite difference based scheme to obtain the lower bound of the critical end force of one-step cantilevers and simply supported beams. The difference between the 'exact' values from Ref. [6] and the corresponding values in Refs. [7-9] were substantial.

The vibration of clamped-free, clamped-clamped, clamped-pinned uniform beams stiffened by one or more rings and under constant conservative or follower axial force was addressed by Dube et al. [10]. Au et al. [11] used modified beam vibration functions to study the vibration and stability of beams with abrupt changes in cross-section and for example calculations/comparison chose the same beams as in Ref. [10]. In Refs. [10,11] step changes in axial force was not allowed for. Fan et al. [12] presented a kind of Gibbs-Phenomenon-Free Fourier series and demonstrated its applications to study the vibration and stability of uniform beams stiffened with rings and beams with open cracks. A beam stiffened by one ring has two-step changes in cross-section. Refs. [10-12] do not have any results on beams with one-step change in cross-section.

In the present paper, the critical axial force combinations for the 16 sets of boundary conditions are tabulated for the selected system parameters.

The theory developed is applicable to any type of step change in cross-section but in the present paper particular attention was paid to three of the types which occur commonly in engineering applications. Type 1 beam is of constant depth and with step changes in breadth, Type 2 is of constant breadth and with step changes in depth and Type 3 is with step changes in depth and breadth i.e., with similar cross-sections-for example, a beam of circular cross-section with step changes in diameter. The 'active' dimension of the three types of beam are, respectively, the breadth, depth and diameter of the beam portion.

The results may be used as bench marks to judge the accuracy of results obtained by any numerical methods.

2. Theory

Fig. 1a shows the Euler-Bernoulli beam $O_{1} O_{0} O_{2}$ with step change in cross-section and in axial force at O_{0}. The end O_{1} is axially restrained and O_{2} is axially free. The ends O_{1} and O_{2} are on classical clamped $(c l)$, pinned $(p n)$, sliding $(s l)$ or free $(f r)$ supports. The flexural rigidity, mass per unit length, the length of the portion $O_{1} O_{0}$ are $E I_{1}, m_{1}$ and L_{1} and the axial force in the portion is T_{1}. The co-ordinate systems with origin at O_{1}, O_{2} are in contra directions. The dynamics of each beam portion are treated separately.

2.1. The mode shape of $O_{1} O_{0}$

Using the sign convention in Ref. [3], for free vibration at frequency ω, if the ordinate $y_{1}\left(x_{1}\right)$ is the amplitude of vibration at abscissa $x_{1}\left(0 \leqslant x_{1} \leqslant L_{1}\right)$, then the amplitude of bending moment $M_{1}\left(x_{1}\right)$ and shearing force $Q_{1}\left(x_{1}\right)$ are

$$
\begin{align*}
& M_{1}\left(x_{1}\right)=E I_{1} \frac{\mathrm{~d}^{2} y_{1}\left(x_{1}\right)}{\mathrm{d} x_{1}^{2}}, \quad Q_{1}\left(x_{1}\right)=-E I_{1} \frac{\mathrm{~d}^{3} y_{1}\left(x_{1}\right)}{\mathrm{d} x_{1}^{3}}+T_{1} \frac{\mathrm{~d} y_{1}\left(x_{1}\right)}{\mathrm{d} x_{1}} \\
& E I_{1} \frac{\mathrm{~d}^{4} y_{1}\left(x_{1}\right)}{\mathrm{d} x_{1}^{4}}-T_{1} \frac{\mathrm{~d}^{2} y_{1}\left(x_{1}\right)}{\mathrm{d} x_{1}^{2}}-m_{1} \omega^{2} y_{1}\left(x_{1}\right)=0 \tag{1}
\end{align*}
$$

Fig. 1. The one-step beam $O_{1} O_{0} O_{2}$, the axial forces at O_{1}, O_{0} and O_{2}, the co-ordinate systems and the forces and moments on the element at O_{0}. The end O_{1} is axially restrained and O_{2} is axially free.

To express the set of equations (1) in dimensionless form, a beam of flexural rigidity $E I_{R}$, mass per unit length m_{R} and length L is used as 'reference' and one defines the dimensionless abscissa X_{1}, amplitude $Y_{1}\left(X_{1}\right)$, step position parameter R_{1}, the operators D_{1}, D_{1}^{n}, the dimensionless bending moment $M_{1}\left(X_{1}\right)$, shearing force $Q_{1}\left(X_{1}\right)$, axial force τ_{1}, flexural rigidity ratio ϕ_{1}, mass per unit length ratio μ_{1}, dimensionless frequency parameters $\alpha_{R} \& \alpha_{1}$ as follows:

$$
\begin{align*}
& X_{1}=\frac{x_{1}}{L}, \quad Y_{1}\left(X_{1}\right)=\frac{y_{1}\left(x_{1}\right)}{L}, \quad R_{1}=\frac{L_{1}}{L}, \quad D_{1}=\frac{\mathrm{d}}{\mathrm{~d} X_{1}}, \quad D_{1}^{n}=\frac{\mathrm{d}^{n}}{\mathrm{~d} X_{1}^{n}}, \\
& M_{1}\left(X_{1}\right)=\frac{M_{1}\left(x_{1}\right) L}{E I_{R}}, \quad Q_{1}\left(X_{1}\right)=\frac{Q_{1}\left(x_{1}\right) L^{2}}{E I_{R}}, \quad \tau_{1}=\frac{T_{1} L^{2}}{E I_{R}}, \\
& \phi_{1}=\frac{E I_{1}}{E I_{R}}, \quad \mu_{1}=\frac{m_{1}}{m_{R}}, \quad \alpha_{R}^{2}=\frac{m_{R} \omega^{4} L^{4}}{E I_{R}}, \quad \alpha_{1}^{4}=\frac{m_{1} \omega^{2} L^{4}}{E I_{1}}=\left(\frac{\mu_{1}}{\phi_{1}}\right) \alpha_{R}^{4}, \tag{2}
\end{align*}
$$

In Eqs. (2), α_{R} is the natural frequency parameter. The nth natural frequency parameter is denoted by $\alpha_{R, n}$. The 'active' dimension d_{1} of Type 1, 2 and 3 beams are the breadth, depth and diameter, respectively, and one has

$$
\begin{array}{ll}
\text { for Type } 1 \text { beam, } & \mu_{1}=d_{1} / d_{R} \quad \text { and } \phi_{1}=d_{1} / d_{R}, \\
\text { for Type } 2 \text { beam, } & \mu_{1}=d_{1} / d_{R} \quad \text { and } \phi_{1}=\left(d_{1} / d_{R}\right)^{3}, \\
\text { for Type } 3 \text { beam, } & \mu_{1}=\left(d_{1} / d_{R}\right)^{2} \quad \text { and } \phi_{1}=\left(d_{1} / d_{R}\right)^{4}, \tag{3}
\end{array}
$$

where d_{R} is the 'active' dimension of the 'reference' beam.
Eqs. (1) in dimensionless form are

$$
\begin{align*}
& M_{1}\left(X_{1}\right)=\phi_{1} D_{1}^{2}\left[Y_{1}\left(X_{1}\right)\right], \quad Q_{1}\left(X_{1}\right)=-\phi_{1} D_{1}^{3}\left[Y_{1}\left(X_{1}\right)\right]+\tau_{1} D_{1}\left[Y_{1}\left(X_{1}\right)\right] \\
& \phi_{1} D_{1}^{4}\left[Y_{1}\left(X_{1}\right)\right]-\tau_{1} D_{1}^{2}\left[Y_{1}\left(X_{1}\right)\right]-\mu_{1} \alpha_{R}^{4} Y_{1}\left(X_{1}\right)=0 \tag{4}
\end{align*}
$$

The solution of the dimensionless mode shape differential equation (4) is

$$
\begin{equation*}
Y_{1}\left(X_{1}\right)=C_{1,1} \sin a_{1} X_{1}+C_{2,1} \cos a_{1} X_{1}+C_{3,1} \sinh b_{1} X_{1}+C_{4,1} \cosh b_{1} X_{1} \tag{5}
\end{equation*}
$$

where $C_{1,1}$ through to $C_{4,1}$ are the four constants of integration and

$$
\begin{equation*}
a_{1}^{2}=\frac{\sqrt{\tau_{1}^{2}+4 \mu_{1} \phi_{1} \alpha_{R}^{4}}-\tau_{1}}{2 \phi_{1}}, \quad b_{1}^{2}=\frac{\sqrt{\tau_{1}^{2}+4 \mu_{1} \phi_{1} \alpha_{R}^{4}}+\tau_{1}}{2 \phi_{1}} \tag{6}
\end{equation*}
$$

The need for Eq. (5) to satisfy the boundary conditions at O_{1} may be used to eliminate two of the constants. The mode shape of the portion $O_{1} O_{0}$ may be expressed as

$$
\begin{equation*}
Y_{1}\left(X_{1}\right)=A_{1} U_{1}\left(X_{1}\right)+B_{1} V_{1}\left(X_{1}\right) \tag{7}
\end{equation*}
$$

where A_{1} and B_{1} are constants and the functions $U_{1}\left(X_{1}\right)$ and $V_{1}\left(X_{1}\right)$ for $c l, p n, s l$ or $f r$ boundary conditions at O_{1} are

$$
\begin{array}{rll}
c l: & U_{1}\left(X_{1}\right)=\sin a_{1} X_{1}-\frac{a_{1}}{b_{1}} \sinh b_{1} X_{1}, & V_{1}\left(X_{1}\right)=\cos a_{1} X_{1}-\cosh b_{1} X_{1}, \\
p n: & U_{1}\left(X_{1}\right)=\sin a_{1} X_{1}, & V_{1}\left(X_{1}\right)=\sinh b_{1} X_{1}, \\
s l: & U_{1}\left(X_{1}\right)=\cos a_{1} X_{1}, & V_{1}\left(X_{1}\right)=\cosh b_{1} X_{1} \tag{8}\\
\text { fr: } & U_{1}\left(X_{1}\right)=\sin a_{1} X_{1}+\frac{\phi_{1} a_{1}^{3}+\tau_{1} a_{1}}{\phi_{1} b_{1}^{3}-\tau_{1} b_{1}} \sinh b_{1} X_{1}, & V_{1}\left(X_{1}\right)=\cos a_{1} X_{1}+\frac{a_{1}^{2}}{b_{1}^{2}} \cosh b_{1} X_{1}
\end{array}
$$

The derivatives of $U_{1}\left(X_{1}\right)$ and $V_{1}\left(X_{1}\right)$ are obtained easily by straightforward differentiation.

2.2. The mode shape of portion $\mathrm{O}_{2} \mathrm{O}_{0}$

The flexural rigidity, mass per unit length, the length of the portion $O_{2} O_{0}$ are $E I_{2}, m_{2}$ and L_{2} and axial force in the portion of the beam is T_{2}. Following the same procedure outlined in previous section, the mode shape of the portion $O_{2} O_{0}$ may be expressed in the form

$$
\begin{equation*}
Y_{2}\left(X_{2}\right)=A_{2} U_{2}\left(X_{2}\right)+B_{2} V_{2}\left(X_{2}\right) \tag{9}
\end{equation*}
$$

in which A_{2} and B_{2} are constants and the functions $U_{2}\left(X_{2}\right)$ and $V_{2}\left(X_{2}\right)$ for $c l, p n, s l$ or $f r$ supports at O_{2} are obtained by replacing the subscript 1 with 2 in the set of equations (8) in which the various coefficients are obtained with the same subscript substitution in Eqs. (2)-(6).

3. The frequency equation

The forces and moments acting on the element at O_{0} is shown in Fig. 1b. The need to satisfy continuity of deflection and of slope and compatibility of bending moment and of shearing force at O_{0} (bearing in mind the contra direction of the co-ordinate axes at O_{1} and at O_{2} will result in the following equations in dimensionless form:

$$
\begin{align*}
& Y_{1}\left(R_{1}\right)=Y_{2}\left(R_{2}\right), \quad D_{1}\left[Y_{1}\left(R_{1}\right)\right]=-D_{2}\left[Y_{2}\left(R_{2}\right)\right], \quad \phi_{1} D_{1}^{2}\left[Y_{1}\left(R_{1}\right)\right]=\phi_{2} D_{2}^{2}\left[Y_{2}\left(R_{2}\right)\right], \\
& \phi_{1} D_{1}^{3}\left[Y_{1}\left(R_{1}\right)\right]-\tau_{1} D_{1}\left[Y_{1}\left(R_{1}\right)\right]=-\phi_{2} D_{2}^{3}\left[Y_{2}\left(R_{2}\right)\right]+\tau_{2} D_{2}\left[Y_{2}\left(R_{2}\right)\right] . \tag{10}
\end{align*}
$$

When Eqs. (7) and (9) are substituted into Eq. (10), for non-trivial solution, the coefficient matrix must be singular and one gets the frequency equation;

$$
\left|\begin{array}{cccc}
U_{1}\left(R_{1}\right) & V_{1}\left(R_{1}\right) & -U_{2}\left(R_{2}\right) & -V_{2}\left(R_{2}\right) \tag{11}\\
D_{1}\left[U_{1}\left(R_{1}\right)\right] & D_{1}\left[V_{1}\left(R_{1}\right)\right] & D_{2}\left[U_{2}\left(R_{2}\right)\right] & D_{2}\left[V_{2}\left(R_{2}\right)\right] \\
\phi_{1} D_{1}^{2}\left[U_{1}\left(R_{1}\right)\right] & \phi_{1} D_{1}^{2}\left[V_{1}\left(R_{1}\right)\right] & -\phi_{2} D_{2}^{2}\left[U_{2}\left(R_{22}\right)\right] & -\phi_{2} D_{2}^{2}\left[V_{2}\left(R_{2}\right)\right] \\
\phi_{1} D_{1}^{3}\left[U_{1}\left(R_{1}\right)\right] & \phi_{1} D_{1}^{3}\left[V_{1}\left(R_{1}\right)\right] & \phi_{2} D_{2}^{3}\left[U_{2}\left(R_{2}\right)\right] & \phi_{2} D_{2}^{3}\left[V_{2}\left(R_{2}\right)\right] \\
-\tau_{1} D_{1}\left[U_{1}\left(R_{1}\right)\right] & -\tau_{1} D_{1}\left[V_{1}\left(R_{1}\right)\right] & -\tau_{2} D_{2}\left[U_{2}\left(R_{2}\right)\right] & -\tau_{2} D_{2}\left[V_{2}\left(R_{2}\right)\right]
\end{array}\right|=0 .
$$

3.1. Natural frequency calculations

In this paper the 'reference' beam in the set of equations (2) was chosen with $E I_{R}=E I_{1}$ i.e., $\phi_{1}=1$ and $m_{R}=m_{1}$ i.e., $\mu_{1}=1$ and natural frequency parameters were expressed (without loss of generality) via the frequency parameter $\alpha_{R}=\alpha_{1}$. Without loss of generality, one may choose

$$
\begin{equation*}
R_{1}+R_{2}=1 \tag{12}
\end{equation*}
$$

The system parameters are $\mu_{2}, \phi_{2}, R_{1}, \tau_{1}$ and τ_{2}. The roots of the frequency equation (11) were determined by a 'search' to bracket an approximate range within which a root is present followed by an iterative procedure based on linear interpolation. The procedure is as follows: $U_{1}\left(X_{1}\right)$ and $V_{1}\left(X_{1}\right)$ was chosen from Eq. (8) taking account of the boundary conditions at O_{1}. A trial frequency parameter ($\alpha_{R}=0.1$ say) was assumed and $U_{1}\left(R_{1}\right), V_{1}\left(R_{1}\right), D_{1}\left[U_{1}\left(R_{1}\right)\right], D_{1}\left[V_{1}\left(R_{1}\right)\right]$, etc. were calculated. For the selected set of system parameters one proceeded to calculate the elements of the first and second columns of the determinant of Eq. (11). Similarly taking account of the type of support at O_{2}, the elements of the third and fourth columns of the determinant were calculated for the same α_{R}. The value of the determinant of the frequency equation (11) was calculated by inductive development [13]. The value of α_{R} was increased in steps of 0.1 and the calculations described were repeated till a sign change in the determinant occurred. The sign change indicated the presence of a root within this range. A 'search' was made within this range but with change of 0.01 in α_{R} to narrow the range within which the root lies. At this stage an iterative procedure based on linear interpolation was invoked to calculate the root to the pre-set accuracy. The 'search' procedure was continued (from the value of the first root) to locate the second root and so on.

In the following example calculations the parameters of the one-step beams are: 'active' dimension $d_{R}=1.0, d_{1}=d_{R}, d_{2}=0.80 d_{R}$, beam portion length parameters: $R_{1}=0.375\left(R_{2}=\right.$ 0.625). Naguleswaran [2] tabulated the first three frequency parameters of the example Type 1, 2 and 3 beams without axial force for 16 combinations of classical boundary conditions. Note that in absence of axial force, rigid-body rotation is possible for $p n \backslash f r, f r \backslash p n$ and $f r \backslash f r$ beams. In Tables $1-4$ in the present paper, the frequency parameters of the example beams are tabulated for various combinations of τ_{1} and τ_{2}.

The beam considered in Table 1 is a one-step tie-bar under constant axial tension $\tau=10.0$ i.e., $\tau_{1}=10.0, \tau_{2}=10.0$. The axial tension 'stiffens' the system and the frequency parameters are greater than the corresponding frequency parameter in Ref. [2] bearing in mind that under axial tension, rigid-body rotation is not possible for $p n \backslash f r, f r \backslash p n$ and $f r \backslash f r$ beams.

Table 1
The first three non-zero frequency parameters of the three types of one-step beams

$\mathrm{BC} O_{1} \backslash O_{2}$	Type 1			Type 2			Type 3		
	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$
$c \backslash c l$	5.0696	8.1124	11.2094	4.8082	7.6667	10.5270	4.9010	7.7046	10.5970
$c \ p n$	4.4443	7.3996	10.4627	4.2791	7.0102	9.8636	4.4149	7.0649	9.9370
$c \ \backslash s l$	2.9255	5.9095	8.9225	2.8799	5.6161	8.4450	3.0196	5.7043	8.5013
$c \backslash \backslash r$	2.8234	5.4484	8.2878	2.8163	5.2631	7.8933	2.9681	5.4079	7.9802
$p n \backslash c l$	4.3648	7.3913	10.4579	4.1477	7.0183	9.7915	4.1886	7.0737	9.8599
$p n \backslash p n$	3.8193	6.6927	9.7236	3.6867	6.3862	9.1464	3.7746	6.4485	9.2319
$p n \backslash s l$	2.4547	5.2222	8.2020	2.4193	4.9988	7.7806	2.5289	5.0582	7.8623
$p n \backslash f r$	2.4001	4.8392	7.5966	2.3890	4.7102	7.2746	2.5064	4.8207	7.3863
$s \backslash \backslash c l$	2.7820	5.8881	8.9116	2.6910	5.5739	8.3598	2.6815	5.6600	8.3897
$s \backslash \backslash p n$	2.3875	5.2409	8.1941	2.3716	5.0240	7.6990	2.4008	5.1333	7.7527
$s \backslash \backslash s l$	3.8026	6.7054	9.7107	3.7179	6.3331	9.1355	3.8010	6.4238	9.1714
$s \backslash \backslash f r$	3.5909	6.1890	9.0578	3.5766	5.9314	8.5540	3.6894	6.0718	8.6244
$f r \backslash c l$	2.6599	5.3460	8.2510	2.5857	5.0550	7.7890	2.5781	5.1070	7.8158
$f r \backslash p n$	2.3165	4.7818	7.5557	2.3099	4.5814	7.1412	2.3378	4.6646	7.1801
$f r \backslash s l$	3.5323	6.1273	9.0410	3.4645	5.7964	8.5567	3.5373	5.8536	8.6057
$f r \backslash f r$	3.3709	5.6829	8.4157	3.3630	5.4527	8.0058	3.4604	5.5608	8.0823

Beam parameters: $d_{1}=d_{R}=1.0, d_{2}=0.8 d_{R}, R_{1}=0.375, R_{2}=1-R_{1}$. Axial forces: $\tau_{1}=10.0, \tau_{2}=10.0$.

Table 2
Same as Table 1 but axial forces: $\tau_{1}=10.0, \tau_{2}=0.0$

$\mathrm{BC} O_{1} \backslash O_{2}$	Type 1			Type 2			Type 3		
	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$
$c \backslash c l$	4.9058	7.9094	11.0683	4.5922	7.3977	10.3334	4.6506	7.3834	10.3603
$c \backslash p n$	4.1416	7.1341	10.2784	3.8982	6.6612	9.6142	3.9790	6.6496	9.6317
$c l \backslash s l$	2.6118	5.6257	8.6941	2.5035	5.2485	8.1400	2.5865	5.2784	8.1313
$c \backslash f r$	2.1347	4.8642	7.9079	2.0683	4.5498	7.3952	2.1425	4.6085	7.3788
$p n \backslash c l$	4.1823	7.1806	10.3183	3.9124	6.7395	9.6007	3.9185	6.7416	9.6287
$p n \backslash p n$	3.4982	6.3940	9.5405	3.2883	5.9978	8.8998	3.3271	5.9846	8.9326
$p n \backslash s l$	2.2082	4.8829	7.9677	2.1313	4.5660	7.4692	2.2081	4.5540	7.4851
$p n \backslash f r$	1.8330	4.1653	7.1751	1.8034	3.8972	6.7319	1.8824	3.9099	6.7303
$s \backslash \backslash c l$	2.4123	5.7112	8.7410	2.2514	5.3358	8.1290	2.1976	5.3798	8.1110
$s \backslash \backslash p n$	1.6552	4.9271	7.9800	1.5611	4.6220	7.4101	1.5354	4.6626	7.4058
$s l \backslash s l$	3.3215	6.4683	9.5095	3.1412	6.0177	8.8631	3.1547	6.0492	8.8392
$s \backslash \backslash f r$	2.5872	5.6978	8.7401	2.4755	5.3171	8.1280	2.5035	5.3559	8.1093
$f r \backslash c l$	2.2785	5.1894	8.0655	2.1378	4.8416	7.5402	2.0908	4.8566	7.5144
$f r \backslash p n$	1.5527	4.4936	7.3189	1.4827	4.2118	6.8238	1.4653	4.2362	6.7955
$f r \backslash s l$	3.0633	5.8860	8.8252	2.9122	5.4741	8.2668	2.9292	5.4701	8.2507
$f r \backslash f r$	2.3735	5.1896	8.0621	2.3014	4.8352	7.5363	2.3394	4.8465	7.5088

Table 3
Same as Table 1 but axial forces: $\tau_{1}=10.0, \tau_{2}=-5.0$

BC $O_{1} \backslash O_{2}$	Type 1			Type 2			Type 3		
	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$
$c \backslash c l$	4.8136	7.8002	10.9943	4.4638	7.2490	10.2297	4.4959	7.2019	10.2315
$c \backslash \backslash p n$	3.9441	6.9890	10.1805	3.6216	6.4634	9.4785	3.6373	6.4080	9.4624
$c l \backslash s l$	2.3400	5.4649	8.5710	2.1064	5.0284	7.9711	2.0570	5.0143	7.9217
$c \backslash f r$	4.4395	7.6935	10.9418	3.9573	7.1000	10.1606	3.8879	7.0096	10.1441
$p n \backslash c l$	4.0786	7.0647	10.2452	3.7705	6.5805	9.4984	3.7490	6.5470	9.5026
$p n \backslash p n$	3.2792	6.2245	9.4428	2.9797	5.7664	8.7643	2.9485	5.6976	8.7645
$p n \backslash s l$	1.9601	4.6825	7.8387	1.7613	4.2922	7.2913	1.7082	4.2201	7.2634
$p n \backslash f r$	3.6239	6.9252	10.1858	3.1445	6.3879	9.4201	3.0211	6.2916	9.4056
$s \backslash \backslash c l$	2.1247	5.6101	8.6517	1.8493	5.1921	8.0051	1.6980	5.2042	7.9589
$s \backslash \backslash p n$	4.7291	7.8663	10.9785	4.3447	7.2517	10.2260	4.3161	7.2116	10.1844
$s l \backslash s l$	2.9369	6.3350	9.4039	2.5944	5.8309	8.7171	2.4557	5.8190	8.6582
$s \backslash \backslash f r$	5.3690	8.5683	11.7398	4.8560	7.8889	10.9307	4.7687	7.8132	10.8931
$f r \backslash c l$	1.9604	5.0995	7.9671	1.6896	4.7114	7.4048	1.5304	4.6977	7.3470
$f r \backslash p n$	4.3059	7.1923	10.2801	3.9454	6.6481	9.5894	3.9038	6.5773	9.5725
$f r \backslash s l$	2.6534	5.7513	8.7101	2.3235	5.2843	8.1082	2.1712	5.2357	8.0522
$f r \backslash f r$	4.8529	7.8666	11.0294	4.3599	7.2647	10.2634	4.2444	7.1653	10.2491

$c \backslash f r, p n \backslash f r, s \backslash p n, s \backslash \backslash f r, f r \backslash p n, f r \backslash f r$ —first mode of Type 1, 2 and 3 beams unstable.

Table 4
Same as Table 1 but axial forces: $\tau_{1}=0.0, \tau_{2}=-5.0$

BC $O_{1} \backslash O_{2}$	Type 1			Type 2			Type 3		
	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$
$c \backslash c l$	4.6637	7.7441	10.9243	4.2897	7.1934	10.1629	4.2971	7.1448	10.1632
$c \ \backslash p n$	3.7643	6.9216	10.1155	3.4152	6.3876	9.4201	3.4039	6.3237	9.4047
$c \backslash s l$	2.1380	5.3464	8.5160	1.8981	4.8844	7.9212	1.8298	4.8450	7.8728
$c \backslash \backslash f r$	4.2670	7.6347	10.8713	3.7343	7.0385	10.0937	3.6212	6.9432	10.0758
$p n \backslash c l$	3.7823	6.9572	10.1372	3.4153	6.4800	9.3818	3.3323	6.4504	9.3779
$p n \backslash p n$	2.8422	6.1074	9.3304	2.3995	5.6498	8.6481	2.2069	5.5799	8.6436
$p n \backslash s l$	0.5227	4.4795	7.7297	4.0511	7.1879	10.0783	3.9389	7.1624	10.0581
$p n \backslash f r$	3.2276	6.8130	10.0758	2.5255	6.2788	9.3011	2.2188	6.1827	9.2782
$s \backslash \backslash l$	1.9914	5.3996	8.5409	1.7137	4.9626	7.8822	1.5523	4.9561	7.8252
$s \backslash \backslash p n$	4.5114	7.7279	10.9040	4.1146	7.0930	10.1547	4.0724	7.0338	10.1151
$s \backslash \backslash s l$	2.7196	6.1424	9.3115	2.3738	5.6118	8.6184	2.2169	5.5753	8.5542
$s \backslash \backslash f r$	5.1475	8.4518	11.6658	4.6041	7.7559	10.8611	4.4892	7.6645	10.8259
$f r \backslash c l$	0.5762	4.5447	7.7456	4.0639	7.1776	10.1750	3.9658	7.1174	10.1805
$f r \backslash p n$	3.6383	6.9119	10.1226	3.1275	6.3457	9.4302	2.9491	6.2542	9.4186
$f r \backslash s l$	0.7465	5.3014	8.5203	4.7606	7.9171	10.8720	4.6413	7.8644	10.8765
$f r \backslash f r$	4.2436	7.6310	10.8780	3.5611	7.0134	10.1060	3.2564	6.9004	10.0934

$c \backslash f r, p n \backslash f r, s l \backslash p n, s \backslash \backslash f r, f r \backslash p n, f r \backslash f r$ —first mode of Type 1, 2 and 3 beams unstable. $p n \backslash s l, f r \backslash c l, f r \backslash s l$ —first mode of Type 2 and 3 beams unstable.

The beam considered in Table 2 had the first portion under axial tension $\tau_{1}=10.0$ while the second portion was not under an axial force i.e., $\tau_{2}=0.0$. The frequency parameters are less than the corresponding frequency parameters in Table 1 but greater that those in Ref. [2].

The beam in Table 3 had the first portion under tension $\tau_{1}=10.0$ while the second portion was under compression $\tau_{2}=-5.0$. The frequency parameters here are less than the corresponding frequency parameters in Table 2. From the pattern of frequency parameter change in Tables 1 and 2 it is concluded that $c \backslash \backslash f r, p n \backslash f r, s \backslash \backslash p n, s \backslash \backslash f r, f r \backslash p n$ and $f r \backslash f r$ beams have buckled in the first mode. Recalculation with axial forces $\tau_{1}=10.0, \tau_{2}=-2.0$ showed that the beams were stable for all the 16 combinations of boundary conditions.

In Table 4, the first portion was not under an axial force i.e., $\tau_{1}=0.0$, while the second portion of the beam was under compression $\tau_{2}=-5.0$. The frequency parameters here are less than the corresponding frequency parameters in Table 3. Type 1, 2 and $3 c \backslash f r, p n \backslash f r, s \backslash p n, s \backslash f r, f r \backslash p n$ and $f r \backslash f r$ beams have buckled in the first mode under this axial force. In addition Type 2 and 3 $p n \backslash s l, f r \backslash c l$ and $f r \backslash s l$ beams have buckled in the first mode.

4. Euler buckling

Evidence from Tables 1-4 and physical considerations suggest that decrease in τ_{1} and/or τ_{2} will result in a decrease in the frequency parameters. For some combinations of τ_{1} and τ_{2} a frequency

Table 5
The first two critical axial force $\tau_{c, 1}$ and $\tau_{c, 2}$ of one-step beam under constant axial compressive force

$\mathrm{BC} O_{1} \backslash O_{2}$	Type 1		Type 2		Type 3	
	$\tau_{c, 1}$	$\tau_{c, 2}$	$\tau_{c, 1}$	$\tau_{c, 2}$	$\tau_{c, 1}$	$\tau_{c, 2}$
$R_{1}=0.375$						
$c \backslash c l$	-33.6543	-70.327	-24.3771	-50.801	-20.8214	-42.353
$c \backslash \backslash n$	-17.1799	-51.201	-12.5579	-36.383	-10.7975	-30.410
$c l \backslash s l$	-8.8109	-33.664	-6.9989	-24.499	-6.1887	-21.053
$c \backslash f r$	-2.2763	-19.191	-1.8546	-14.576	-1.6367	-12.787
$p n \backslash c l$	-17.5818	-52.424	-12.6994	-40.109	-10.5859	-34.505
$p n \backslash p n$	-8.3176	-34.816	-5.7238	-26.085	-4.6941	-22.082
$p n \backslash s l$	-2.0060	-19.327	-1.3135	-13.960	-1.0593	-11.637
$p n \backslash f r$	-8.3176	-34.816	-5.7238	-26.085	-4.6941	-22.082
$R_{1}=0.5$						
$c \backslash c l$	-34.9876	-72.442	-26.2391	-58.282	-22.3984	-51.395
$c \backslash \backslash p n$	-17.4319	-53.857	-12.8019	-42.021	-10.9603	-36.109
$c l \backslash s l$	-8.8549	-34.988	-7.2430	-26.247	-6.5820	-22.432
$c \backslash f r$	-2.3584	-19.350	-2.0839	-14.674	-1.9198	-12.863
$p n \backslash c l$	-18.5199	-52.644	-14.8888	-41.401	-12.9934	-37.089
$p n \backslash p n$	-8.7461	-35.416	-6.5197	-28.760	-5.5066	-25.754
$p n \backslash s l$	-2.0472	-20.255	-1.3811	-16.221	-1.1257	-14.154
$p n \backslash f r$	-8.7461	-35.416	-6.5197	-28.760	-5.5066	-25.754

Beam parameters: $d_{1}=d_{R}=1.0, d_{2}=0.8 d_{R}, R_{1}$ as stated.

Table 6
The first two critical axial force $\tau_{1 c, 1}$ and $\tau_{1 c, 2}$ in first portion of one-step beam

$\mathrm{BC} O_{1} \backslash O_{2}$	Type 1		Type 2		Type 3	
	$\tau_{1 c, 1}$	$\tau_{1 c, 2}$	$\tau_{1 c, 1}$	$\tau_{1 c, 2}$	$\tau_{1 c, 1}$	$\tau_{1 c, 2}$
$\tau_{2}=0.0$						
$c \backslash c l$	-68.5273	-178.964	-54.2496	-170.872	-48.1686	-168.098
$c \backslash p n$	-47.6525	-174.422	-38.6971	-168.348	-35.0444	-166.206
$c l \backslash s l$	-23.7528	-164.648	-21.6548	-162.247	-20.8732	-161.387
$c \backslash f r$	-17.5460	-157.914	-17.5460	-157.914	-17.5460	-157.914
$p n \backslash c l$	-29.2003	-103.260	-22.8799	-90.950	-19.7757	-86.483
$p n \backslash p n$	-16.6273	-91.817	-12.4257	-84.043	-10.5347	-81.220
$p n \backslash s l$	-2.9310	-76.813	-1.9781	-74.476	-1.6134	-73.631
$p n \backslash f r$	-70.1839	-280.735	-70.1839	-280.735	-70.1839	-280.735
$\tau_{2}=2.0$						
$c \backslash c l$	-70.2119	-179.750	-56.1811	-171.685	-50.2004	-168.914
$c \backslash \backslash p n$	-50.0799	-175.519	-41.4060	-169.445	-37.8561	-167.295
$c l \backslash s l$	-25.4269	-166.663	-23.3936	-164.227	-22.6194	-163.334
$c \backslash f r$	-22.2976	-162.968	-21.8191	-162.431	-21.5527	-162.134
$p n \backslash c l$	-30.3975	-104.287	-24.3273	-92.000	-21.3448	-87.518
$p n \backslash p n$	-18.3312	-93.228	-14.4118	-85.462	-12.6410	-82.619
$p n \backslash s l$	-3.6647	-78.750	-2.7705	-76.406	-2.4209	-75.538
$p n \backslash f r$	-2.2741	-75.182	-2.0541	-74.656	-1.9308	-74.365

$\tau_{2}=0 p n \backslash f r$-rigid-body rotation possible. τ_{2} as shown in table. Beam parameters: as in Table 1.
parameter may be zero. This is Euler buckling or onset of instability. A necessary but not sufficient condition for buckling is one of τ_{1} and τ_{2} or both must be compressive. Further decrease in τ_{1} and/or τ_{2} will render the mode unstable. In what follows, some critical combinations of the axial forces are considered.

Consider the buckling of the example one-step beam under critical axial force $\tau_{c}=\tau_{1}=\tau_{2}$. For the selected set of beam parameters, to calculate τ_{c} one writes $\alpha_{R}=0$ in the frequency equation (11). The 'search and linear interpolation' routine used for frequency parameter calculation was used to calculate the critical axial force τ_{c} for $R_{1}=0.375$ and for $R_{1}=0.50$. The first two critical forces $\tau_{c, 1}$ and $\tau_{c, 2}$ are tabulated in Table 5 for $c l \backslash c l$ through to $p n \backslash f r$ boundary conditions only. It was found that τ_{c} of $s \backslash \backslash c l, c l \backslash s l$ and $s l \backslash s l$ beams were the same, τ_{c} of $s \backslash p n, c l \backslash n$ and $s l \backslash f r$ beams were the same, τ_{c} of $f r \backslash c l, p n \backslash s l$ and $f r \backslash s l$ beams were identical and τ_{c} of $f r \backslash p n$, $p n \backslash f r$ and $f r \backslash f r$ beams were identical. Timoshenko [6, p. 113] derived the formula to calculate the critical compressive force of a one-step cantilever. The values obtained from the formula and the values listed for τ_{c} of $c \backslash \backslash f r$ beam were identical. Timoshenko [6, p. 98] also provided the expression for buckling of a simply supported one-step beam under constant compressive axial force. The τ_{c} of $p n \backslash p n$ beam in Table 5 and the values from the equation in Ref. [6] and were found to be identical.

In the next axial force combinations considered, the first portion was under critical axial compressive force $\tau_{1 c}$ while the axial force in second portion was constant. The first two critical axial force $\tau_{1 c, 1}$ and $\tau_{1 c, 2}$ tabulated in Table 6 are for $\tau_{2}=0.0$ and for $\tau_{2}=2.0$. Note that for

Table 7
The first two critical axial force $\tau_{2 c, 1}$ and $\tau_{2 c, 2}$ in second portion of one-step beam

$\mathrm{BC} O_{1} \backslash O_{2}$	Type 1		Type 2		Type 3	
	$\tau_{2 c, 1}$	$\tau_{2 c, 2}$	$\tau_{2 c, 1}$	$\tau_{2 c, 2}$	$\tau_{2 c, 1}$	$\tau_{2 c, 2}$
$\tau_{1}=0.0$						
$c \backslash c l$	-51.2009	-92.022	-34.7967	-62.831	-28.8331	-51.682
$c \backslash p n$	-22.1247	-73.048	-15.4717	-49.277	-13.0019	-40.549
$c l \backslash s l$	-10.8867	-53.272	-8.1190	-36.348	-6.9637	-30.143
$c \backslash f r$	-2.4292	-27.422	-1.9313	-19.370	-1.6875	-16.300
$p n \backslash c l$	-38.0548	-69.727	-25.0537	-49.048	-20.2154	-40.609
$p n \backslash p n$	-14.4104	-52.920	-9.4089	-36.373	-7.5781	-29.786
$p n \backslash s l$	-5.0532	-45.479	-3.2341	-29.107	-2.5873	-23.285
$p n \backslash f r$	-20.2130	-80.852	-12.9363	-51.745	-10.3490	-41.396
$\tau_{1}=2.0$						
$c \backslash \backslash l$	-51.8625	-92.795	-35.3483	-63.437	-29.3243	-52.242
$c \backslash p n$	-22.5650	-73.822	-15.8266	-49.912	-13.3122	-41.133
$c \backslash s l$	-11.2308	-53.893	-8.3510	-36.859	-7.1454	-30.586
$c \backslash f r$	-2.5465	-27.941	-2.0028	-19.762	-1.7410	-16.624
$p n \backslash c l$	-39.8965	-70.515	-26.6213	-49.655	-21.6967	-41.138
$p n \backslash p n$	-15.5866	-54.319	-10.4628	-37.467	-8.5882	-30.779
$p n \backslash s l$	-7.0297	-47.643	-5.1005	-31.245	-4.3829	-25.405
$p n \backslash f r$	-0.9277	-22.339	-0.8503	-15.013	-0.8029	-12.390

$\tau_{1}=0 p n \backslash f r$ —rigid-body rotation possible. τ_{1} as shown in table. Beam parameters: as in Table 1.
$\tau_{2}=0.0$, the critical axial force $\tau_{1 c}$ of $c l \backslash f r$ beams are same for Type 1,2 and 3 beams. This is to be expected because for $f r$ condition of the second portion, buckling will be independent of the dimensions of the second portion and from Ref. [6], $\left.\tau_{1 c}=\left[(2 n-1) \pi / 2 R_{1}\right)\right]^{2}$ where $n=1,2 \ldots$. For $\tau_{2}=0.0$ for the same reason the critical axial force of $p n \backslash f r$ beams are the same and from Ref. [4] $\tau_{1 c}=\left[n \pi / R_{1}\right]^{2}$, where $n=0,1,2, \ldots$. Note that the first buckling mode of $p n-f r$ beam is rigid-body rotation and technically the critical $\tau_{1 c}$ of $p n \backslash f r$ beam (for $\tau_{2}=0.0$) in Table 6 need to be shifted one cell to the right. Recall that $\tau_{1 c}$ of $c \Lambda \backslash f r$ and $f r \backslash f r$ beams are the same and $\tau_{1 c}$ of $s \backslash f r$ and $p n \backslash f r$ beams are the same. For $\tau_{2}=2.0$ rigid-body rotation is not possible.

In the next case considered, the axial force in first portion was constant while the axial force in second portion was critical $\tau_{2 c}$. The first two critical forces $\tau_{2 c, 1}$ and $\tau_{2 c, 2}$ are tabulated in Table 7 for $\tau_{1}=0.0$ and for $\tau_{1}=2.0$. For $\tau_{1}=0$, if the first portion is $f r$ then, $\tau_{2 c}$ of $f r \backslash c l, f r \backslash p n, f r \backslash s l$ and $f r \backslash f r$ beams should be independent of the dimensions of the first portion. Note that (for $\tau_{1}=0$), $\tau_{2 c}$ of $f r \backslash c l$ (which is the same as $\tau_{2 c}$ of $p n \backslash s l$) is the same for Type 1,2 and 3 beams provided the $\tau_{2 c}$ is normalized relative to the second portion of the beam.

5. Concluding remarks

The frequency equations of Euler-Bernoulli one-step beam under different axial force in the two beam portions and 16 combinations of classical boundary conditions are expressed as fourth
order determinants equated to zero. The system parameters are the ratio of the mass per unit length and the ratio of flexural rigidity of the two portions, the step position and the axial force in the two portions. For an example set of beam parameters, the first three frequency parameters are tabulated for various combinations of axial forces in the two portions.

Euler buckling occurs for certain combinations of the axial forces for which a frequency parameter is zero. The first two critical combinations are tabulated for the example set of beam parameters.

The tables may be used to judge frequencies and buckling axial force combinations obtained by numerical methods like Rayleigh-Ritz, finite element, finite difference, etc. Although results are presented for the three types of beams, the method developed is applicable for any type of step changes in cross-section.

Acknowledgements

It is gratefully acknowledged that Refs. [11] and [12] were brought to the notice of the author by the referee.

References

[1] S.K. Jang, C.W. Bert, Free vibrations of stepped beams: exact and numerical solutions, Journal of Sound and Vibration 130 (2) (1989) 164-346.
[2] S. Naguleswaran, Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one step change in cross-section and with ends on classical supports, Journal of Sound and Vibration 252 (4) (2002) 751-767.
[3] H. Mccallion, Vibration of Linear Mechanical Systems, Longman, London, 1973.
[4] A. Bokaian, Natural frequencies of beams under compressive axial loads, Journal of Sound and Vibration 126 (1) (1988) 49-65.
[5] A. Bokaian, Natural frequencies of beams under tensile axial loads, Journal of Sound and Vibration 142 (3) (1990) 481-498.
[6] S. Timoshenko, J.M. Gere, Theory of Elastic Stability, 2nd Edition, McGraw-Hill, Tokyo, 1961.
[7] C.V. Girijavallabhan, Buckling loads of nonuniform columns, American Society of Civil Engineers Journal of the Structural Division 95 (ST11) (1969) 2419-2431.
[8] H.L. Schreyer, P.Y. Shih, Lower bounds to column buckling loads, American Society of Civil Engineers Journal of the Engineering Mechanics Division 99 (EM5) (1973) 1011-1022.
[9] M. O’Rouke, T. Zebrowski, Buckling load for nonuniform columns, Computers and Structures 7 (1977) 717-720.
[10] G.P. Dube, R.K. Agarwal, P.C. Dumir, Natural frequencies and buckling loads of beam-columns stiffened by rings, Applied Mathematical Modelling 20 (1996) 646-653.
[11] F.T.K. Au, D.Y. Zheng, Y.K. Cheung, Vibration and stability of non-uniform beams with abrupt changes of cross-section by using C ${ }^{1}$ modified beam functions, Applied Mathematical Modelling 20 (1999) 19-34.
[12] S.C. Fang, D.Y. Zheng, F.T.K. Au, Gibbs-phenomena-free Fourier series for vibration stability of complex beams, American Institute of Aeronautics and Astronautics 39 (10) (2001) 1977-1984.
[13] I.S. Sokolnikoff, R.M. Redheffer, Mathematics of Physics and Engineering, McGraw-Hill, New York, 1966.

[^0]: *Tel.: +64-3-364-2987x7215; fax: +64-3-364-2078.
 E-mail address: s.naguleswaran@mech.canterbury.ac.nz (S. Naguleswaran).

